Reconstitution of translocation activity for secretory proteins from solubilized components of Escherichia coli
- 1 September 1990
- journal article
- Published by Wiley in European Journal of Biochemistry
- Vol. 192 (3), 583-589
- https://doi.org/10.1111/j.1432-1033.1990.tb19264.x
Abstract
The protein translocation system of Escherichia coli was solubilized and reconstituted, using the octylglucoside dilution method, into liposomes prepared from E. coli phospholipids. SecA, ATP, phospholipids and membrane proteins were found to be essential for the translocation of a model secretory protein, uncleavable OmpF-Lpp. Phospholipids were found to play roles not only in liposome formation but also in the stabilization of membrane proteins during the octylglucoside extraction. The effects of IgGs specific to five distinct regions of the SecY molecule on protein translocation into proteoliposomes were examined. IgGs specific to the amino- and carboxyl-terminal regions of the SecY molecule strongly inhibited the translocation activity, indicating the participation of SecY in the translocation. Generation of a proton motive force due to the simultaneous reconstitution of F0F1-ATPase was also observed in the presence of ATP. An ATP-generating system consisting of creatine phosphate and creatine kinase significantly enhanced the formation of the proton motive force and the protein translocation activity of the proteoliposomes. Collapse of the proton motive force thus generated partially inhibited the translocation.Keywords
This publication has 44 references indexed in Scilit:
- Assembly of translocation-competent proteoliposomes from detergent-solubilized rough microsomesCell, 1990
- SecB functions as a cytosolic signal recognition factor for protein export in E. coliCell, 1989
- SecA protein is directly involved in protein secretion in Escherichia coliFEBS Letters, 1989
- SecA protein is required for secretory protein translocation into E. coli membrane vesiclesCell, 1988
- SITE-DIRECTED MUTAGENESIS AND ION-GRADIENT DRIVEN ACTIVE TRANSPORT: On the Path of the ProtonAnnual Review of Physiology, 1988
- Solubilization and reconstitution of the Na+‐motive NADH oxidase activity from the marine bacterium Vibrio alginolyticusFEBS Letters, 1984
- TheLac carrier protein inEscherichia coliThe Journal of Membrane Biology, 1983
- Solubilization and reconstitution of membrane energy‐transducing systems of Escherichia coliFEBS Letters, 1982
- Electrochemical proton gradient in inverted membrane vesicles from Escherichia coliBiochemistry, 1980
- Chemical Synthesis of Peptides and ProteinsAnnual Review of Biochemistry, 1970