Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage

Abstract
The structure and replication of the single-stranded circular RNA genome of hepatitis delta virus (HDV) are unique relative to those of known animal viruses, and yet there are real similarities between HDV and certain infectious RNAs of plants. Therefore, since some of the latter RNAs have been shown to undergo in vitro site-specific cleavage and even ligation, we tested the hypothesis that similar events might also occur for HDV RNA. In partial confirmation of this hypothesis, we found that in vitro the RNA complementary to the HDV genome, the antigenomic RNA, could undergo a self-cleavage that was not only more than 90% efficient but also occurred only at a single location. This cleavage was found to produce junction fragments consistent with a 5''-hydroxyl and a cyclic 2'',3''-monophosphate. Since the observed cleavage was both site-specific and occurred only once per genome length, we propose that the site may be relevant to the normal intracellular replication of the HDV genome. Because the site is located almost adjacent to the 3'' end of the delta antigen-coding region, the only known function open reading frame of HDV, we suggest that the cleavage may have a role not only in genome replication but also in RNA processing, helping to produce a functional mRNA for the translation of delta antigen.