The requirements for protein synthesis and degradation, and the control of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo.
Open Access
- 1 February 1992
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 116 (3), 707-724
- https://doi.org/10.1083/jcb.116.3.707
Abstract
Fertilization of clam oocytes initiates a series of cell divisions, of which the first three--meiosis I, meiosis II, and the first mitotic division--are highly synchronous. After fertilization, protein synthesis is required for the successful completion of every division except meiosis I. When protein synthesis is inhibited, entry into meiosis I and the maintenance of M phase for the normal duration of meiosis occur normally, but the chromosomes fail to interact correctly with the spindle in meiosis II metaphase. By contrast, inhibition of protein synthesis immediately after completion of meiosis or mitosis stops cells entering the next mitosis. We describe the behavior of cyclins A and B in relation to these "points of no return." The cyclins are synthesized continuously and are rapidly destroyed shortly before the metaphase-anaphase transition of the mitotic cell cycles, with cyclin A being degraded in advance of cyclin B. Cyclin destruction normally occurs during a 5-min window in mitosis, but in the monopolar mitosis that occurs after parthenogenetic activation of clam oocytes, or when colchicine is added to fertilized eggs about to enter first mitosis, the destruction of cyclin B is strongly delayed, whereas proteolysis of cyclin A is maintained in an activated state for the duration of metaphase arrest. Under either of these abnormal conditions, inhibition of protein synthesis causes a premature return to interphase that correlates with the time when cyclin B disappears.Keywords
This publication has 60 references indexed in Scilit:
- Dominoes and Clocks: the Union of Two Views of the Cell CycleScience, 1989
- The fission yeast dis2+ gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatasesCell, 1989
- The role of cyclin synthesis and degradation in the control of maturation promoting factor activityNature, 1989
- cdc2 protein kinase is complexed with both cyclin A and B: Evidence for proteolytic inactivation of MPFCell, 1989
- Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosisCell, 1989
- Activation of cdc2 protein kinase during mitosis in human cells: Cell cycle-dependent phosphorylation and subunit rearrangementCell, 1988
- The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytesCell, 1986
- Microtubule cycles in oocytes of the surf clam, Spisula solidissima: An immunofluorescence studyDevelopmental Biology, 1986
- Chromosome Segregation in Mitosis and MeiosisAnnual Review of Cell Biology, 1985
- The small subunit of ribonucleotide reductase is encoded by one of the most abundant translationally regulated maternal RNAs in clam and sea urchin eggs.The Journal of cell biology, 1985