Hydrogen storage in carbon nitride nanobells

Abstract
Aligned carbon nitride (C–N) nanobells in polymer form, prepared by microwave plasma-assisted chemical vapor deposition, were used as hydrogen adsorbent. A hydrogen storage capacity up to 8 wt % was achieved reproducibly under ambient pressure and at temperature of 300 ° C . The high hydrogen storage capacity under the moderate conditions was mainly derived from the short nanobell structure with openended graphitic layers, as well as the nitrogen in the nanobells, which acts as an active site for hydrogen adsorption. The high hydrogen uptake and the simple adsorption–desorption process suggest that a C–N nanobell is promising as a hydrogen storagematerial.