Fitness Cost Due to Mutations in the 16S rRNA Associated with Spectinomycin Resistance in Chlamydia psittaci 6BC

Abstract
The fitness cost of a resistance determinant is the primary parameter that determines its frequency in vivo. As a model for analysis of the impact of drug resistance mutations on the intracellular life cycle of Chlamydia spp., we studied the growth of four genetically defined spectinomycin-resistant (Spc r ) clonal variants of Chlamydia psittaci 6BC isolated in the plaque assay. The development of each variant was monitored over 46 h postinfection in the absence of drug, either in pure culture or in 1:1 competition with the parent strain. Spc r mutations in the 16S rRNA gene at positions 1191 and 1193 were associated with a marked impairment of C.psittaci biological fitness, and the bacteria were severely outcompeted by the wild-type parent. In contrast, mutations at position 1192 had minor effects on the bacterial life cycle, allowing the resistant isolates to compete more efficiently with the wild-type strain. Thus, mutations with a wide range of fitness costs can be selected in the plaque assay, providing a new strategy for prediction and monitoring of the emergence of antibiotic resistance in chlamydiae. So far, drug resistance has not been a serious threat for the treatment of chlamydial infections. Tetracycline is an effective antichlamydial drug that targets 16S rRNA. Attempts to isolate spontaneous tetracycline-resistant mutants of C. psittaci 6BC revealed a frequency −9 . We suggest that the rarity of genotypic antibiotic resistance among chlamydial clinical isolates reflects the deleterious effects of such mutations on the fitness of these obligate intracellular bacteria in the host.