Nonlinearity of p-i-n photodetectors

Abstract
At higher operating frequencies, the field dependence of the carrier velocity in p-i-n photodetectors generates harmonics and intermodulation products that can degrade the dynamic range of RF fiber-optic links. The authors present both a perturbational theory and measured harmonic data for a p-i-n photodiode operated at very high power densities which show that this and other detector nonlinear effects need not seriously compromise link performance. In particular, neither transit-time nor static nonlinearities in p-i-n photodiodes need limit the dynamic range of fiber-optic links operating below 5 GHz. The fact that the theoretical bandwidth of the photodiode, with all parasitic capacitance and inductance ideally removed, is 17 GHz, suggests that comparable spur-free performance should be achievable at X and Ku-band frequencies, once packaging parasitics are reduced.