Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition

Abstract
Extended defect reduction in GaN grown by lateral epitaxial overgrowth (LEO) on large-area SiO2/GaN/Al2O3 wafers by low pressure metalorganic chemical vapor deposition is characterized using transmission electron microscopy and atomic force microscopy. The laterally overgrown GaN (LEO GaN) has a rectangular cross section with smooth (0001) and {112̄0} facets. The density of mixed-character and pure edge threading dislocations in the LEO GaN (<5×106cm−2) is reduced by at least 3–4 orders of magnitude from that of bulk GaN (∼1010cm−2). A small number of edge dislocations with line directions parallel to the basal plane are generated between the bulk-like overgrown GaN and the LEO GaN regions as well as at the intersection of adjacent merging LEO GaN stripes. The edge dislocations are most likely generated to accommodate the small misorientation between bulk-like GaN and LEO GaN regions as well as between adjacent single-crystal LEO GaN stripes.