Identification and Metabolism of 1-(Malonylamino)cyclopropane-1-carboxylic Acid in Germinating Peanut Seeds
Open Access
- 1 January 1983
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 71 (1), 197-199
- https://doi.org/10.1104/pp.71.1.197
Abstract
Peanut seeds (Arachis hypogea L. Yue-you 551) contain 50 to 100 nanomoles per gram conjugated 1-aminocyclopropanecarboxylic acid (ACC). Based on paper chromatography, paper electrophoresis, and gas chromatography-mass spectrometry, it was verified that the major ACC conjugate was N-malonyl-ACC (MACC). Germinating peanut seeds converted [2-14C]ACC to ethylene 70 times more efficiently than N-malonyl-[2-14C]ACC; when ACC was administered, most of it was metabolized to MACC. Germinating peanut seeds produced ethylene and converted l-[3,4-14C]methionine to ethylene; this ethylene biosynthesis was inhibited by aminoethoxyvinylglycine. These data indicate that MACC occurs in peanut seeds but does not serve as the source of ethylene during germination; ethylene is, however, synthesized from methionine via ACC.Keywords
This publication has 6 references indexed in Scilit:
- Identification of 1-(malonylamino)cyclopropane-1-carboxylic acid as a major conjugate of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor in higher plantsBiochemical and Biophysical Research Communications, 1982
- Auxin-induced Ethylene Production and Its Inhibition by Aminoethyoxyvinylglycine and Cobalt IonPlant Physiology, 1979
- A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acidAnalytical Biochemistry, 1979
- 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesisArchives of Biochemistry and Biophysics, 1979
- Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethyleneProceedings of the National Academy of Sciences, 1979
- Ethylene as a Component of the Emanations From Germinating Peanut Seeds and Its Effect on Dormant Virginia-type SeedsPlant Physiology, 1969