Relation between genotype and phenotype in Swedish phenylketonuria and hyperphenylalaninemia patients

Abstract
Phenylketonuria (PKU) and hyperphenylalaninemia (HPA) are caused mostly by an inherited (autosomal recessive) deficiency in hepatic phenylalanine hydroxylase (PAH) activity. More than 50 PAH mutations have ben reported. The goal of the present study was to examine the molecular basis for the clinical heterogeneity of Swedish PKU and HPA patients. Mutations were identified through allele-specific oligonucleotide hybridization or DNA sequencing on 128 of the 176 mutant alleles (73%). Three mutations (R408W, Y414C and IVS12) together accounted for 56% of all mutant alleles and ten relatively infrequent mutations were found on another 17% of all mutant alleles. Patients from 50 of the 88 families (57%) had identified mutations in both PAH genes and allowed use to compare the clinical effects of different combinations of PAH mutations. The in vitro activity of all of these mutations, including the newly identified G272X and ΔL364, have been tested in a eukaryotic expression system. There was a strong relationship between the average in vitro PAH activity of the two mutant enzymes and both the phenylalanine tolerance and the neonatal pretreatment serum phenylalanine concentration. This confirms previous observations in Danish and German PKU patients that disease phenotype is a consequence of the nature of the mutations at the PAH locus and not significantly influenced by other loci. The sample population in the previous study did not, however, include mild HPA patients, and the observed correlation is thus restricted to severe and moderate mutant alleles. Since a comparatively high proportion of the Swedish patients were mildly affected, we have provided additional evidence that this correlation is valid throughout a continuous spectrum of clinical varieties. PAH genotyping could therefore help predict prognosis of a recently diagnosed PKU or HPA child.