Macroscopic quantum tunneling in magnetic proteins

Abstract
We report low-temperature measurements of the frequency-dependent magnetic noise and magnetic susceptibility of nanometer-scale antiferromagnetic horse-spleen ferritin particles, using an integrated dc SQUID microsusceptometer. A sharply defined resonance near 1 MHz develops below T∼0.2 K. The behavior of this resonance as a function of temperature, applied magnetic field, and particle concentration indicates that it results from macroscopic quantum tunneling of the Néel vector of the antiferromagnets.