Multiple regulation of the activity of adenylate cyclase in Escherichia coli

Abstract
We have studied the correlation between the activities of adenylate cyclase (ATP pyrophosphatelyase-(cyclizing); EC 4.6.1.1) and in vivo rates of synthesis and intracellular concentrations of adenosine 3′,5′ cyclic monophosphate (cAMP) under various growth conditions in wild-type Escherichia coli and in mutants lacking or overproducing the cAMP receptor protein (CAP). We showed that when wild-type bacteria are grown in the presence of a variety of carbon sources the intracellular concentrations of cAMP are inversely related to the adenylate cyclase activities determined in permeabilized cells, suggesting that the carbon source-dependent modulation of cAMP levels is not directly related to the regulation of adenylate cyclase activity. In mutants lacking functional CAP (crp) the in vivo rates of cAMP synthesis are several hundred-fold higher than in the wild-type parent without a parallel increase of adenylate cyclase activities. In a strain carrying multiple copies of the crp gene and overproducing CAP the activity of adenylate cyclase is severely inhibited, although the in vivo rate of cAMP synthesis is similar to the parental strain. We interpret these results as indicating that CAP controls mainly the activity rather than the synthesis of adenylate cyclase.