Predicting radiotherapy‐induced cardiac perfusion defects
- 10 December 2004
- journal article
- radiation therapy-physics
- Published by Wiley in Medical Physics
- Vol. 32 (1), 19-27
- https://doi.org/10.1118/1.1823571
Abstract
The purpose of this work is to compare the efficacy of mathematical models in predicting the occurrence of radiotherapy‐induced left ventricular perfusion defects assessed using single‐photon emission computed tomography (SPECT). The basis of this study is data from 73 left‐sided breast/chestwall patients treated with tangential photon fields. The mathematical models compared were three commonly used parametric models [Lyman normal tissue complication probability (LNTCP), relative serialty (RS), generalized equivalent uniform dose (gEUD)] and a nonparametric model (Linear discriminant analysis—LDA). Data used by the models were the left ventricular dose—volume histograms, or SPECT‐based dose–function histograms, and the presence/absence of SPECT perfusion defects postradiation therapy (21 patients developed defects). For the parametric models, maximum likelihood estimation and F‐tests were used to fit the model parameters. The nonparametric LDA model step‐wise selected features (volumes/function above dose levels) using a method based on receiver operating characteristics (ROC) analysis to best separate the groups with and without defects. Optimistic (upper bound) and pessimistic (lower bound) estimates of each model's predictive capability were generated using ROC curves. A higher area under the ROC curve indicates a more accurate model (a model that is always accurate has ). The areas under these curves for different models were used to statistically test for differences between them. Pessimistic estimates of areas under the ROC curve using dose–volume histogram/dose–function histogram inputs, in order of increasing prediction accuracy, were LNTCP , RS , gEUD , and LDA . Only the LDA model benefited from SPECT‐based regional functional information. In general, the LDA model was statistically superior to the parametric models. The LDA model selected as features the left ventricular volumes above approximately , essentially volume in field, and , as best separating the groups with and without defects. In conclusion, the nonparametric LDA model appears to be a more accurate predictor of radiotherapy‐induced left ventricular perfusion defects than commonly used parametric models.Keywords
This publication has 31 references indexed in Scilit:
- Functional consequences of radiation (RT)-induced perfusion changes in patients with left-sided breast cancerInternational Journal of Radiation Oncology*Biology*Physics, 2002
- Ischemic heart disease after mantlefield irradiation for Hodgkin's disease in long-term follow-upRadiotherapy and Oncology, 1999
- Statistical Comparison of Two ROC-curve Estimates Obtained from Partially-paired DatasetsMedical Decision Making, 1998
- Long-term cardiac mortality after radiotherapy of breast cancer—application of the relative seriality modelThe British Journal of Radiology, 1996
- Computer-aided diagnosis of breast cancer: Artificial neural network approach for optimized merging of mammographic featuresAcademic Radiology, 1995
- Cardiac disease after chest irradiation for Hodgkin's disease: incidence in 108 patients with long follow-upInternational Journal of Cardiology, 1995
- Radiation injury to the heartInternational Journal of Radiation Oncology*Biology*Physics, 1995
- Tumour and Normal Tissue Responses to Fractionated Non-uniform Dose DeliveryInternational Journal of Radiation Biology, 1992
- Complication Probability as Assessed from Dose-Volume HistogramsRadiation Research, 1985
- SPECT Quantification of Technetium-99m Microspheres Within the Canine LungJournal of Computer Assisted Tomography, 1984