Aging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre

Abstract
We have examined the effects of 11 substitutions of active centre gorge residues of human acetylcholinesterase (HuAChE) on the rates of phosphonylation by 1,2,2-trimethylpropyl methyl-phosphonofluoridate (soman) and the aging of the resulting conjugates. The rates of phosphonylation were reduced to as little as one-seventieth, mainly in mutants of the hydrogen-bond network (Glu-202, Glu-450, Tyr-133). These recombinant enzymes as well as the F338A, W86A, W86F and D74N mutant HuAChEs varied in their resistance to aging (15-3300-fold relative to the wild type). The most dramatic resistance to aging was observed for the phosphonyl conjugate of the mutant W86A enzyme (1850-3300-fold relative to the wild type). It is proposed that Trp-86 contributes to the aging process by stabilizing the evolving carbonium ion on the 1,2,2-trimethylpropyl moiety, via charge-pi interaction. The rate-enhancing effect of Trp-86 provides a rationale for the unique facility of aging in soman-inhibited cholinesterases, compared with the corresponding conjugates in other serine hydrolases. Replacements of Glu-202 by aspartic acid, glutamine or alanine residues resulted in a similar (1/130-1/300) decrease of the rates of aging. A comparable decrease was also observed for the conjugate of the F338A mutant. These results, and the similar pH dependence of aging rates for the wild-type and E202Q and F338A mutant HuAChEs, indicate that Glu-202 is not involved in proton transfer to the phosphonyl moiety. On the basis of these findings and of molecular modelling we suggest that Glu-202 and Phe-338 contribute to the aging process by stabilizing the imidazolium of the catalytic triad His-447 via charge-charge and charge-pi interactions respectively, thereby facilitating an oxonium formation on the phosphonyl moiety.

This publication has 39 references indexed in Scilit: