On the onset of high-Reynolds-number grid-generated wind tunnel turbulence

Abstract
Using an active grid devised by Makita (1991), shearless decaying turbulence is studied for the Taylor-microscale Reynolds number, Rλ, varying from 50 to 473 in a small (40 × 40 cm2 cross-section) wind tunnel. The turbulence generator consists of grid bars with triangular wings that rotate and flap in a random way. The value of Rλ is determined by the mean speed of the air (varied from 3 to 14 m s–1) as it passes the rotating grid, and to a lesser extent by the randomness and rotation rate of the grid bars. Our main findings are as follows. A weak, not particularly well-defined scaling range (i.e. a power-law dependence of both the longitudinal (u) and transverse (v) spectra, F11(k1) and F22(k1) respectively, on wavenumber k1) first appears at Rλ ∼ 50, with a slope, n1, (for the u spectrum) of approximately 1.3. As Rλ was increased, n1 increased rapidly until Rλ ∼ 200 where n ∼ 1.5. From there on the increase in n1 was slow, and even by Rλ = 473 it was still significantly below the Kolmogorov value of 1.67. Over the entire range, 50 [les ] Rλ [les ] 473, the data were well described by the empirical fit: . Using a modified form of the Kolmogorov similarity law: F11(k1) = C1*ε2/3k1–5/3(k 1η)5/3–n1 where ε is the turbulence energy dissipation rate and η is the Kolmogorov microscale, we determined a linear dependence between n1 and C1*: C1* = 4.5 – 2.4n1. Thus for n1 = 5/3 (which extrapolation of our results suggests will occur in this flow for Rλ ∼ 104), C1* = 0.5, the accepted high-Reynolds-number value of the Kolmogorov constant. Analysis of the p.d.f. of velocity differences Δu(r) and Δv(r) where r is an inertial subrange interval, conditional dissipation, and other statistics showed that there was a qualitative difference between the turbulence for Rλ < 100 (which we call weak turbulence) and that for Rλ > 200 (strong turbulence). For the latter, the p.d.f.s of Δu(r) and Δv(r) had super Gaussian tails and the dissipation (both of the u and v components) conditioned on Δu(r) and Δv(r) was a strong function of the velocity difference. For Rλ < 100, p.d.f.s of Δu(r) and Δv(r) were Gaussian and conditional dissipation statistics were weak. Our results for Rλ > 200 are consistent with the predictions of the Kolmogorov refined similarity hypothesis (and make a distinction between the dynamical and kinematical contributions to the conditional statistics). They have much in common with similar statistics done in shear flows at much higher Rλ, with which they are compared.