Transition Form of Microbodies. Overlapping of Two Sets of Marker Proteins During the Rearrangement of Glyoxysomes into Leaf Peroxisomes

Abstract
Several forms of microbodies have been characterized on the basis of their biochemical functions. We have investigated cucumber cotyledons which house two different microbody forms during their development. In these cells, a shift from organelles with the enzymes of .beta.-oxidation and glyoxylate cycle to peroxisomes with the enzymes of the photosynthetic C2-cycle can be induced by light. The transition state and the time course of changes was studied at different levels of gene expression during the first 2 days of illumination, by quantifying the rate of de novo protein synthesis in cotyledons and by measuring the mRNA activities in vitro. Synthesis and turnover of particular proteins were determined during the transition stage by immunoprecipitation of malate synthase, isocitrate lyase, catalase, multifunctional protein, and thiolase, and quantified by fluorography. From the mRNA activities and the rate of protein synthesis, gene expression for enzymes of the glyoxylate cycle and .beta.-oxidation started to decrease 24-36 h after onset of continuous light. At that time the rate of synthesis of glycolate oxidase, a leaf peroxisomal marker, is already maximal. By pulse-chase experiments 0-48 h after the onset of light the speed and intensity of protein turnover were measured. Rates of proteolytic degradation of individual enzymes indicated that the different enzymes were not lost simultaneously or all at once. This excludes a destruction of the whole organelle by the lytic compartment.

This publication has 12 references indexed in Scilit: