Degradation properties in metal-nitride-oxide-semiconductor structures

Abstract
Degradation properties in metal-nitride-oxide-semiconductor (MNOS) structures are investigated using mainly p-channel MNOS transistors. A model is proposed on the basis of various experimental results, attributing the degradation to the passage of hole current through the SiO2 layer, followed by creation of hole traps in the SiO2 layer, and creation of interface states at the Si-SiO2 interface. A theoretical treatment of the enhancement of hole conduction in the degraded SiO2 layer of the p-channel thick-oxide MNOS transistor is performed, and the hole traps created in the SiO2 layer appear to be E′ centers when the experimental results are fitted to the theoretical calculations. The nature of the interface states created by write-erase (W/E) cycling is also discussed, comparing the experimental results using a p- and an n-channel MNOS transistor.

This publication has 28 references indexed in Scilit: