Room-temperature oxidation of a GaAs(001) surface induced by the interaction of hyperthermal atomic oxygen and studied by x-ray photoelectron spectroscopy and ion scattering spectroscopy

Abstract
In this study a hyperthermal oxygen atom source has been used to form an oxide layer on an Ar+-sputtered GaAs(001) surface at room temperature, and this layer has been examined using x-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS). XPS data indicate that the Ga in the near-surface region is oxidized predominantly to Ga2O3 with a significant contribution from GaAsO4 while the As is oxidized predominantly to an AsOx species with significant contributions from As2O3 and GaAsO4 and/or As2O5. The oxide layer thickness is estimated to be about 25 Å, and the XPS Ga:As atom ratio increases from 1.1 to 1.6 during the oxidation. The ISS data indicate that the resulting oxide layer formed is more electrically insulating than a native oxide layer on this surface.

This publication has 13 references indexed in Scilit: