Topology of Higgs fields

Abstract
It is shown that the conserved magnetic charge discovered by ’t Hooft in non−Abelian gauge theories with spontaneous symmetry breaking is not associated with the invariance of the action under a symmetry group. Rather, it is a topological characteristic of an isotriplet of Higgs fields in a three−dimensional space: the Brouwer degree of the mapping between a large sphere in configuration space and the unit sphere in field space provided by the normalized Higgs field ?a = φabφb)−1/2. The use of topological methods in determining magnetic charge configurations is outlined. A peculiar interplay between Dirac strings and zeros of the Higgs field under gauge transformations is pointed out. The monopole−antimonopole system is studied.

This publication has 8 references indexed in Scilit: