Abstract
Multiple-quantum-well structures based on two crystalline organic semiconductors, namely, 3,4,9,10 perylenetetracarboxylic dianhydride and 3,4,7,8 naphthalenetetracarboxylic dianhydride, have been grown by organic molecular-beam deposition. Both optical-absorption and time-resolved photoluminescence measurements reveal a significant effect on the binding energy and the radiative recombination probability of excitons due to localization of carriers. Variational calculations of the ground-state exciton energy in quantum wells have been done, and the results agree with the experimental data. This provides evidence for exciton confinement in organic quantum-well structures.