Epitaxial growth of PbTiO3 thin films on (001) SrTiO3 from solution precursors

Abstract
A mixed alkoxide liquid precursor was used to form epitaxial PbTiO3 thin films by spin-coating on cubic (001) SrTiO3 substrates. The films were heat-treated at temperatures between 380 °C/1 h and 800 °C/1 h. X-ray diffraction, atomic force microscopy, scanning and transmission electron microscopy were used to characterize the microstructure of the films and to evaluate the epitaxial phenomena. At ∼400 °C/1 h, a polycrystalline, metastable Pb-Ti fluorite crystallizes from the pyrolyzed amorphous precursor. At slightly higher temperatures (∼420 °C/1 h), the thermodynamically stable phase with the perovskite structure epitaxially nucleates at the film/substrate interface. A small number of epitaxial grains grow through the film toward the surface and consume the nanocrystalline fluorite grains. Coarsening of the perovskite grains leads to a reduction in mosaic spread during further heating. Pores, which concurrently coarsen with grain growth, produce a pitted surface as they disappear from within the film. At 800 °C/1 ha dense epitaxial PbTiO3 film with a smooth surface is observed. Parameters governing the formation of a- and c-domains are discussed as well as the small tilts of the domain axes away from the substrate normal.