Energy stability of the Ekman boundary layer

Abstract
The critical value RE of the Reynolds number R is predicted by the application of the energy theory. When R < RE, the Ekman layer is the unique steady solution of the Navier-Stokes equations and the same boundary conditions, and is, further, stable in a slightly weaker sense than asymptotically stable in the mean. The critical value RE is determined by numerically integrating the relevant Euler-Lagrange equations. An analytic lower bound to RE is obtained. Comparisons are made between RE and RL, the critical value of R according to linear theory, in order to demark the region of parameter space, RE < R < RL, in which subcritical instabilities are allowable.

This publication has 7 references indexed in Scilit: