Ethanol production by immobilizedSaccharomyces cerevisiae,Saccharomyces uvarum, andZymomonas mobilis

Abstract
Saccharomyces cerevisiae NRRL Y‐2034, S, uvarum NRRL Y‐1347, and Zymomonas mobilis NRRL B‐806 each were separately immobilized in a Ca‐alginate matrix and incubated in the presence of a free‐flowing and continuous 1, 3, 5, 10, or 20% (w/w) glucose solution. In general, the yeast cells, converted 100percnt; of the 1, 3, and 5% glucose to alcohol within 48 h and maintained such a conversion rate for at least two weeks. The bacterium converted ca. 90% (w/w) of the 1, 3, and 5% glucose to alcohol continuously for one week. However, both the yeast and bacterium were inhibited in the highest glucose (20% w/w) solution. All of the immobilized cultures produced some alcohol for at least 14 days. Immobilized S. cerevisiae was the best alcohol producer of all of the glucose concentrations; the yeast yielded 4.7 g ethanol/100 g solution within 72 h in the 10% glucose solution. After 7–8 days in the 10% solution, S. cerevisiae produced ethanol at 100% of theoretical yield (5.0 g ethanol/100 g solution), with a gradual decrease in alcohol production by 14 days. Immobillized S. uvarum produced a maximum of 4.0 g ethanol/100 g solution within 2 days and then declined to ca. 1.0 g ethanol/100 g solution after 7 days continuous fermentation in the 10% glucose solution. Zymomonas mobilis reached its maximum ethanol production at 4 days (4.7 g/100 g solution), and then diminished similarly to S. uvarum. The development of a multiple disk shaft eliminated the problem both of uneven distribution of alginate‐encapsulated cells and of glucose channeling within the continuous‐flow fermentor column. This invention improved alcohol production about threefold for the yeast cells.