The extent of phase transformation in silicon hardness indentations

Abstract
The extent of phase transformation occurring in silicon during room-temperature indentation experiments has been examined by transmission electron microscopy of low-load microindents. The results show that the entire hardness impression arises from structural transformation and extrusion of a ductile high pressure phase. In particular, there is no dislocation activity or other mechanism of plastic deformation operating outside the clearly demarcated transformation zone. The observable impression consists of an amorphous transformation zone with an adjacent region of plastically extruded material and a layer of polycrystalline silicon at the near-surface transformation interface.