Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings

Abstract
Enhancing the light absorption in ultrathin-film silicon solar cells is important for improving efficiency and reducing cost. We introduce a double-sided grating design, where the front and back surfaces of the cell are separately optimized for antireflection and light trapping, respectively. The optimized structure yields a photocurrent of 34.6 mA/cm2 at an equivalent thickness of 2 μm, close to the Yablonovitch limit. This approach is applicable to various thicknesses and is robust against metallic loss in the back reflector.