Error Analysis for the In-Situ Fabrication of Mechanisms

Abstract
Fabrication techniques like Solid Freeform Fabrication (SFF), or Layered Manufacturing, enable the manufacture of completely pre-assembled mechanisms (i.e. those that require no explicit component assembly after fabrication). We refer to this manner of building assemblies as in-situ fabrication. An interesting issue that arises in this domain is the estimation of errors in the performance of such mechanisms as a consequence of manufacturing variability. Assumptions of parametric independence and stack-up made in conventional error analysis for mechanisms do not hold for this method of fabrication. In this paper we formulate a general technique for investigating the kinematic performance of mechanisms fabricated in-situ. The technique presented admits deterministic and stochastic error estimation of planar and spatial linkages with ideal joints. The method is illustrated with a planar example. Errors due to joint clearances, form errors, or other effects like link flexibility and driver-error, are not considered in the analysis—but are part of ongoing research.