Sister chromatid exchange and chromosome aberration analyses in mice after in vivo exposure to acrylonitrile, styrene, or butadiene monoxide

Abstract
The use of polymers in plastic and rubber products has generated concern that monomers potentially active in biological systems may be eluted from these substances. We have evaluated two such monomers, acrylonitrile and styrene, for the induction of chromosome damage in mice. Butadiene monoxide, a presumed metabolite of a third important monomer, 1,3‐butadiene, was also tested. These chemicals were administered as a single intraperitoneal injection; sister chromatid exchanges and chromosome aberrations were analyzed in bone marrow cells. Acrylonitrile and styrene were largely negative for these endpoints when tested at doses ranging to 60 mg/kg and 1,000 mg/kg, respectively. Butadiene monoxide, which previously has not been tested in a mammalian system, was determined to be a very effective inducer of sister chromatid exchanges and chromosome aberrations. Both endpoints showed a clear dose response and a greater than ten‐fold increase over control levels at high doses. These studies represent an initial step in our efforts to evaluate genetic risk associated with exposure to common polymeric chemicals.