Ammonium repression of cephalosporin production by Streptomyces clavuligerus

Abstract
Production of .beta.-lactam antibiotics took place during growth of Streptomyces clavuligerus in chemically defined medium. The specific activities of isopenicillin N synthetase ("cyclase"), isopenicillin N epimerase, and deacetoxycephalosporin C synthetase ("expandase") increased during the exponential phase of growth. Specific cephalosporin productivity during fermentation followed a similar pattern, reaching a maximum near the end of the growth phase and decaying rapidly in the stationary phase. Ammonium chloride depressed cephalosporin production, presumably as a result of repression of cyclase and expandase formation, but not of epimerase. No inhibitory effects on enzyme activity by ammonium were found. Addition of tribasic magnesium phosphate [Mg3(PO4)2 .cntdot. 8H2O] prevented the repression of cyclase and markedly stimulated cephalosporin production. Cephamycin C and, in smaller amounts, O-carbamoyldeacetylcephalosporin C were only cephalosporins detected. Growth with ammonium resulted in lower titers of both compounds, and did not change the relative proportion of each. The correlation found between cephalosporin productivity and cyclase specific activity in different media suggests that formation of this enzyme may be the rate-limiting step in the pathway.