Laser cooling of internal degrees of freedom. II

Abstract
Theoretical progress in the cooling of internal degrees of freedom of molecules using shaped laser pulses is reported. The emphasis is on general concepts and universal constraints. Several alternative definitions of cooling are considered, including reduction of the von Neumann entropy, −tr{ρ̂ log ρ̂} and increase of the Renyi entropy, tr{ρ̂ 2 } . A distinction between intensive and extensive considerations is used to analyse the cooling process in open systems. It is shown that the Renyi entropy increase is consistent with an increase in the system phase space density and an increase in the absolute population in the ground state. The limitations on cooling processes imposed by Hamiltonian generated unitary transformations are analyzed. For a single mode system with a ground and excited electronic surfaces driven by an external field it is shown that it is impossible to increase the ground state population beyond its initial value. A numerical example based on optimal control theory demonstrates this result. For this model only intensive cooling is possible which can be classified as evaporative cooling. To overcome this constraint, a single bath degree of freedom is added to the model. This allows a heat pump mechanism in which entropy is pumped by the radiation from the primary degree of freedom to the bath mode, resulting in extensive cooling.