Adipogenesis in a murine bone marrow stromal cell line capable of supporting B lineage lymphocyte growth and proliferation: Biochemical and molecular characterization

Abstract
Recent advances in long-term bone marrow (BM) culture techniques have allowed investigators to dissect cellular components responsible for lympho-hematopoiesis. Consequently, a number of “stromal” cell clones have been developed which are capable of supporting B lineage lymphocyte growth and proliferation in vitro by direct cell-cell interactions and the release of cytokines. While much work has focused on the support function of these cells, questions remain regarding their own differentiation potential. We have examined adipo-genesis in the cloned BM stromal cell, BMS2. The presence of hydrocortisone, methylisobutylxanthine, or 30% fetal calf serum each accelerated adipocyte differentiation. This process was accompanied by the accumulation of triglycerides and cholesterol esters along with the induction of adipocyte-specific enzymes. Likewise, the steady-state level of mRNA transcripts increased for genes related to lipid metabolism. However, the pattern of mRNA expression in BMS2 adipocytes differed from that of a well-established, pre-adipocyte cell line, 3T3-L1, with respect to the following genes: glycerol phosphate dehydrogenase, CAAT/enhancer binding protein and angiotensinogen. Adipocyte BMS2 cells retailed the ability to support stromal cell-dependent B lineage lymphocytes in methylcellulose assays. The adipocytes continued to express macrophagecolony-stimulating factor mRNA constitutively and interleukin 6 mRNA in an inducible manner, similar to the BMS2 pre-adipocytes. Together, these data document a close developmental relationship between a specialized fibroblasts and adipocytes in the BM and suggest that adipocyte stromal cells may play an active role in lympho-hematopoiesis.