State Estimation for Delayed Neural Networks

Abstract
In this letter, the state estimation problem is studied for neural networks with time-varying delays. The interconnection matrix and the activation functions are assumed to be norm-bounded. The problem addressed is to estimate the neuron states, through available output measurements, such that for all admissible time-delays, the dynamics of the estimation error is globally exponentially stable. An effective linear matrix inequality approach is developed to solve the neuron state estimation problem. In particular, we derive the conditions for the existence of the desired estimators for the delayed neural networks. We also parameterize the explicit expression of the set of desired estimators in terms of linear matrix inequalities (LMIs). Finally, it is shown that the main results can be easily extended to cope with the traditional stability analysis problem for delayed neural networks. Numerical examples are included to illustrate the applicability of the proposed design method.