Quantum wires in InGaAs/InP fabricated by holographic photolithography

Abstract
Quantum wires ≊300–400 Å wide were fabricated by holographic photolithography from a wafer having a single 100 Å InGaAs quantum well. The wires were then recoated with InP using atmospheric pressure organometallic vapor phase epitaxy, which resulted in a planar surface. A high-resolution scanning electron microscope showed little deterioration of the wires due to recoating. At moderate intensities ≊10 W/cm2, photoluminescence (PL) studies showed a small shift in energy (≊6 meV) and a slight line narrowing consistent with a one-dimensional structure. The quantum efficiency of the wires was comparable to the control wafer—above that expected from the fill factor of 17%. Some evidence of states below the energy gap is seen at low PL excitation, but these appear to saturate at higher excitations.