Diagnosing Pulmonary Embolism

Abstract
Computed tomographic pulmonary angiography has become the standard of care for the evaluation of patients with suspected pulmonary embolism (PE). In addition to the direct depiction or exclusion of a pulmonary embolus in suspected PE, a number of predictive markers have been established to evaluate the patient's prognosis in acute and in chronic PE. An accurate risk stratification based on CT findings is crucial because optimal management, monitoring, and therapeutic strategies depend on the prognosis. With the recent introduction of the so-called "dual-source" CT scanners, that is, a scanner consisting of 2 tubes and 2 detectors mounted orthogonally to each other, different tube voltages can be used simultaneously, resulting in different energies of the emitted x-ray spectra (dual-energy CT; DECT). Initial results have shown that DECT is capable of iodine mapping of the pulmonary parenchyma, reliably depicting the segmental defects in iodine distribution in locations corresponding to embolic vessel occlusions. This study deals with a number of actual topics on PE imaging with multidetector CT and DECT, including the discussion of the relevant imaging findings to assess the patient's prognosis, the potential and additional benefit of dual-energy information on the parenchymal iodine distribution, the optimization of scan protocols including low-radiation dose chest pain protocols, and the discussion on future perspectives of CT in PE patients, such as the role of computer-aided diagnostic tools or the potential of ventilation imaging with DECT.