Abstract
Ion motion in the acceleration region of a magnetically insulated ion diode and electron flux to the anode are studied locally. Two classes of slowly growing ion deflections are observed, indicating the presence of transverse electric fields in the diode gap. A simple model, which treates the diode as an emitting surface perturbed away from planarity, is offered to infer profiles of the electric field. These profiles are consistent with the observation that one of the ion‐deflection classes is associated with a significant fraction of the increases of the electron flux to the anode. The inferred growth rates of the perturbations suggest that the observed ion deflections are caused by a nonuniform expansion of the anode plasma. The transverse electric fields associated with the perturbations constitute a significant (as much as 20%) fraction of the diode accelerating field. Short duration ion deflections accompanied by intense electron bursts to the anode are also observed. The data suggest that these deflections and the electron bursts originate at processes in the cathode plasma.