Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation

Abstract
We have used the pulsed time structure of the Cornell High-Energy Synchrotron Source (CHESS) to carry out a nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation. Time-resolved temperature distributions and interfacial overheating and undercooling were measured on 〈111〉 and 〈100〉 silicon during 25 ns UV laser pulses through the analysis of thermal expansion induced strain. The temperature gradients were found to be > 107 K/cm at the liquid-solid interface and the temperature distributions have been shown to be in agreement with numerical heat flow calculations for these laser conditions. The combined overheating and undercooling (during ∼ 10 m/s melting and ∼ 6 m/s regrowth) was measured to be 110 ± 30 K on 〈111〉 oriented silicon and 50 ± 25 K on 〈100〉 silicon. These values have been interpreted in terms of velocity coefficients of overheating and undercooling.