DRYING OF CARROTS. I. DRYING MODELS.

Abstract
Three models of different complexity are proposed to describe the falling rate period of the carrot drying process with shrinkage. A moving or fixed boundary problem as well as a constant or local moisture and temperature dependent effective diffusivity are considered. The moving boundary problem is solved by an explicit finite difference method. Heat transfer coefficient and effective diffusivity identification were carried out. The results of the heat transfer coefficient show a good agreement with other sources. Using experimental data and the models. describing the heat and mass transfer three different expressions for the effective diffusivity are established. Two of them are only temperature dependent considering or not particle shrinkage. The third one takes into account temperature and local moisture as well as shrinkage. Drying of foods is a complicated process involving simultaneous coupled heat and mass transfer phenomena which occur inside the material being dried (Chiang and Petersen, 1987). Several models are found in the literature, representing mass and energy transfer which take place during food drying (King, 1968; Sokhansanj and Gustafson, 1980). Usually, approximate solutions are obtained with these