Leakage currents in Ba0.7Sr0.3TiO3 thin films for ultrahigh-density dynamic random access memories

Abstract
(Ba,Sr)TiO3 (BST) thin films grown by chemical vapor deposition and with platinum (Pt) top and bottom electrodes have been characterized with respect to the leakage current as a function of temperature and applied voltage. The data can be interpreted via a thermionic emission model. The Schottky approximation accounts for superohmic behavior at higher fields, but the barrier lowering is stronger than expected from this theory. While the leakage mechanism is comparable to SrTiO3 thin films prepared by chemical solution deposition, the absolute values of the leakage current are significantly lower for the metalorganic chemical vapor deposition (MOCVD) prepared BST film. This is presumably due to a more homogeneous microstructure of the latter and may also be due to different electrode processing. The influence of the film thickness on the leakage in combination with additional findings is used to discuss the field distribution in the films under a dc voltage stress.