Single-grained PZT thin films for high level FRAM integration—fabrication and characterization

Abstract
A new method for formation of large single grains as large as 40 μm in length of the sputter-deposited PZT(65/35) thin films has been developed in this research group. Crystallized PZT dots were used as a seed and the grains were laterally grown to form a square pattern on the Pt substrate. It turned out that the electrical characteristics of the single grained PZT thin films were much superior to those of the poly-grained PZT thin films. The leakage current was measured to be less than 8x10−8 A/cm2, the breakdown field more than 1,240 kV/cm, the value of saturation polarization and remanent polarization as high as 42 μC/cm2, 30 μC/cm2, respectively. No degradation of the polarization properties was observed even after the 2×1011 cycles at 1 MHz using a ± 10 V wave form in Pt/PZT/Pt structure. The accelerated retention test revealed that it takes more than 6×107 years for the remanent polarization to be reduced down to 80% of the original value.