Coherent manipulation of semiconductor quantum bits with terahertz radiation

Abstract
Quantum bits1,2,3,4,5 (qubits) are the fundamental building blocks of quantum information processors, such as quantum computers6. A qubit comprises a pair of well characterized quantum states that can in principle be manipulated quickly compared to the time it takes them to decohere by coupling to their environment7. Much remains to be understood about the manipulation and decoherence of semiconductor qubits. Here we show that hydrogen-atom-like motional states of electrons bound to donor impurities in currently available semiconductors can serve as model qubits. We use intense pulses8 of terahertz radiation to induce coherent, damped Rabi oscillations9,10 in the population of two low-lying states of donor impurities in GaAs11,12,13. Our observations demonstrate that a quantum-confined extrinsic electron in a semiconductor can be coherently manipulated like an atomic electron, even while sharing space with ∼ 105 atoms in its semiconductor host. We anticipate that this model system will be useful for measuring intrinsic decoherence processes, and for testing both simple and complex manipulations of semiconductor qubits.