Regulation of Glucose Transport in Candida utilis

Abstract
The transport systems for glucose present in Candida utilis cells, growing in batch and continuous cultures on several carbon sources, have been studied. Two different systems were found: a proton symport and a facilitated diffusion system. The high-affinity symport (Km for glucose about 15 .mu.M) transported one proton per mole of glucose and was partially constitutive, appearing in cells grown on gluconeogenic substrates such as lactate, ethanol and glycerol. It was also induced by glucose concentrations up to 0.7 mM and repressed by higher ones. The level of repression depended on the external glucose concentration at which cells had grown in a way similar to that shown by the maltose-uptake system, so both systems seem to be under a common glucose control. Initial uptake by facilitated diffusion, the only transport system present in cells growing at glucose concentrations higher than 10 mM, showed a complex kinetic dependence on the extracellular glucose concentration. This could be explained either by the presence of at least two different systems simultaneously active, one with a Km around 2 mM and the other with a Km of about 1 M, or by the allosteric or hysteretic behaviour of a single carrier whose apparent Km would oscillate between 2 and 70 mM.