Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide

Abstract
Results presented in this letter demonstrate that the effective channel mobility of lateral, inversion-mode 4H-SiC MOSFETs is increased significantly after passivation of SiC/SiO/sub 2/ interface states near the conduction band edge by high temperature anneals in nitric oxide. Hi-lo capacitance-voltage (C-V) and ac conductance measurements indicate that, at 0.1 eV below the conduction band edge, the interface trap density decreases from approximately 2/spl times/10/sup 13/ to 2/spl times/10/sup 12/ eV/sup -1/ cm/sup -2/ following anneals in nitric oxide at 1175/spl deg/C for 2 h. The effective channel mobility for MOSFETs fabricated with either wet or dry oxides increases by an order of magnitude to approximately 30-35 cm/sup 2//V-s following the passivation anneals.