Impact of Oxygen Inhalation on the Pulmonary Circulation

Abstract
Oxygen-enhanced magnetic resonance (MR)-ventilation imaging of the lung is based on the inhalation of a high concentration of oxygen (hyperoxia). However, the effect of hyperoxia on the pulmonary circulation is not yet fully understood. In this study the impact of hyperoxia on the pulmonary circulation was evaluated. Ten healthy volunteers were examined in a 1.5 T MRI system with contrast-enhanced perfusion MRI (saturation recovery 2D turboFLASH) of the lung and phase-contrast flow measurements in the pulmonary trunk. Both measurements were performed breathing room air (RA) and, subsequently, 100% oxygen (15 L/min) (O(2)). The perfusion measurements showed a significant difference between RA and O(2) for the pulmonary blood flow (181 vs. 257 mL/min/100 mL, P = 0.04) and blood volume (14 vs. 21 mL/100 mL, P = 0.008). The mean transit time of the contrast bolus was not changed (P = 0.4) in the dorsal part of the lung, whereas it was significantly prolonged (P = 0.006) in the central part. The mean heart rate during flow measurements breathing RA (67 +/- 11 beats/min) and O(2) (61 +/- 12 beats/min) were not significantly different (P = 0.055). The average cardiac output (pulmonary trunk) was not significantly lower while breathing O(2) (RA: 5.9 vs. O(2): 5.5 L/min, P = 0.054). Hyperoxia causes a significant increase and redistribution of the pulmonary perfusion, whereas it leads to a not significant decrease in cardiac output. Thus, for MR-perfusion and MR-flow measurements oxygen inhalation should be avoided, if possible. In the context of oxygen-enhanced MR-ventilation imaging of the lung the contribution of this effect needs to be further evaluated.

This publication has 42 references indexed in Scilit: