Predicting thin-film stoichiometry in reactive sputtering

Abstract
The electrical, optical, and mechanical properties of a compound film depend strongly on the composition of the film. Therefore, it is interesting to study a wide variety of compositions of many new compound materials. Reactive sputtering is a widely used technique to produce compound thin films. With this technique it is possible to fabricate thin films with different compositions. However, it has not yet, to any great extent, been possible to predict the composition of the sputtered film. In this article we will present a model that enables us to predict both sputtering rate and film composition during reactive sputtering. The results point out that there exists a very simple linear relationship between processing parameters for maintaining constant thin-film composition in the reactive sputtering process. Based on these results, it is possible for the first time to combine information of both sputtering rate and film composition into the same graphical representation. Access to this new and simple graphical representation may eliminate much of the ‘‘trial and error’’ work that earlier has been associated with the reactive sputtering process.