Surface and interface properties of ferroelectric BaTiO3 thin films on Si using RuO2 as an electrode

Abstract
Ferroelectric BaTiO3 thin films were deposited on Si by rf magnetron sputtering. A conductive oxide, RuO2, was used as the bottom electrode of the capacitors. The performance of the thin film capacitors was found to be a strong function of the surface and interface properties between ferroelectric BaTiO3 and the bottom electrode. A suitable capacitor configuration must be used to preserve the bottom electrode, to enhance the dielectric constant, and to reduce the leakage current density of the films. BaTiO3 thin film on the RuO2/Si substrate, where the BaTiO3 thin film has a bilayer structure of polycrystalline on microcrystalline, showed a dielectric constant of 125 at a frequency of 1 MHz, leakage current density of 10−6 A/cm2 at a field intensity of 2.5 × 105 V/cm, and a breakdown voltage above 106 V/cm.
Keywords