Abstract
Measurements are reported which provide extensive data on the resistivity, temperature, and injection level dependences of the minority carrier lifetime in neutron irradiated p- and n-type silicon. The lifetime damage constants are observed to be quite dependent on the injected minority carrier density, in both conductivity types, over the temperature range from 76°K to 300°K. The low injection level damage constants have been measured and found to be dependent on material resistivity in p-type silicon, but only slightly dependent on resistivity in n-type silicon. The results of the experimental studies are compared to the predictions of two alternate models for recombination at defect clusters. For defect clusters of approximately 250 A radius, as expected from range calculations, these comparisons indicate that each contains a relatively small number of deep defects (30 - 40). The defects are individually characterized by a deep donor level near Ev + 0.35 eV and a deep acceptor level near Ec - 0.50 eV. Since these levels correspond approximately to the known energy levels of the silicon divacancy, it is suggested that the divacancy may be the active recombination center within the defect clusters.