Central and peripheral chemoreceptor inputs to phrenic and hypoglossal motoneurons

Abstract
We tested the hypothesis that phrenic and hypoglossal responses to progressive hypercapnia differ qualitatively because the CO2-related drive inputs to their respective motoneuron pools are different. The relative contributions of carotid sinus and central chemoreceptor inputs to hypoglossal and phrenic responses during hyperoxic hypercapnia were determined by comparing the two nerve activities during rebreathing runs done either before and after bilateral carotid sinus nerve (CSN) section, or without and with cooling of the intermediate, I(s), area on the ventral surface of the medulla. The studies were performed on chloralose-anesthetized, vagotomized, paralyzed cats. Cooling of the I(s) area impaired phrenic responsiveness to hypercapnia more than hypoglossal responsiveness, whereas CSN section had the opposite effect. Thus phrenic nerve response was more dependent on central chemoreceptor input than was the hypoglossal response, but hypoglossal response was more dependent on carotid sinus chemoreceptor input. We conclude that the phrenic and hypoglossal motoneuron pools each receive a different functional input from both the medullary and the carotid sinus chemoreceptors.