Abstract
Wireless measurement systems with passive surface acoustic wave (SAW) sensors offer new and exciting perspectives for remote monitoring and control of moving parts, even in harsh environments. This review paper gives a comprehensive survey of the present state of the measurement systems and should help a designer to find the parameters required to achieve a specified accuracy or uncertainty of measurement. Delay lines and resonators have been used, and two principles have been employed: SAW one-port devices that are directly affected by the measurand and SAW two-port devices that are electrically loaded by a conventional sensor and, therefore, indirectly affected by the measurand. For radio frequency (RF) interrogation, time domain sampling (TDS) and frequency domain sampling (FDS) have been investigated theoretically and experimentally; the methods of measurement are described. For an evaluation of the effects caused by the radio interrogation, we discuss the errors caused by noise, interference, bandwidth, manufacturing, and hardware tuning. The system parameters, distance range, and measurement uncertainty are given numerically for actual applications. Combinations of SAW sensors and special signal processing techniques to enhance accuracy, dynamic range, read out distance, and measurement repetition rate (measurement bandwidth) are presented. In conclusion, an overview of SAW sensor applications is given.

This publication has 17 references indexed in Scilit: