Gas-source molecular beam epitaxy of monocrystalline β–SiC on vicinal α(6H)–SiC

Abstract
Single-crystal epitaxial films of cubic β(3C)–SiC(111) have been deposited on hexagonal α(6H)–SiC(0001) substrates oriented 3–4° toward [1120] at 1050–1250 °C via gas-source molecular beam epitaxy using disilane (Si2H6) and ethylene (C2H4). High-resolution transmission electron microscopy revealed that the nucleation and growth of the β(3C)–SiC regions occurred primarily on terraces between closely spaced steps because of reduced rates of surface migration at the low growth temperatures. Double positioning boundaries were observed at the intersections of these regions.