Modeling for multilevel switching in oxide-based bipolar resistive memory

Abstract
We report a physical model for multilevel switching in oxide-based bipolar resistive memory (ReRAM). To confirm the validity of the model, we conduct experiments with tantalum-oxide-based ReRAM of which multi-resistance levels are obtained by reset voltage modifications. It is also noticeable that, in addition to multilevel switching capability, the ReRAM exhibits extremely different switching timescales, i.e. of the order of 10(-7) s to 10(0) s, with regard to reset voltages of only a few volts difference which can be well explained by our model. It is demonstrated that with this simple model, multilevel switching behavior in oxide bipolar ReRAM can be described not only qualitatively but also quantitatively.