cAMP‐dependent activation of protein synthesis correlates with dephosphorylation of elongation factor 2

Abstract
The addition of 5 mM cAMP to a cell-free translation system from rabbit reticulocytes increases the rate of protein synthesis 3–5-fold. Lower concentrations of cAMP (0.005, 0.05 and 0.5 mM) have no effect on translation in this system. cAMP at all the concentrations tested stimulates the phosphorylation of the same pattern of polypeptides, while 5 mM cAMP additionally stimulates dephosphorylation of the 95 kDa polypeptide identified as elongation factor 2 (EF-2). Testing of the preparations of EF-2 with a different content of the phosphorylated form in poly(U)-directed poly(Phe) synthesis reveals that the EF-2 activity correlates with the fraction of non-phosphorylated EF-2. Thus cAMP-dependent activation of protein synthesis seems to be due to dephosphorylation of EF-2.